Keeping it all together: auxin-actin crosstalk in plant development.
نویسندگان
چکیده
Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in polar auxin transport and identify known similarities and differences in its structure, function and dynamics in comparison to non-plant organisms. By describing how auxin modulates actin expression and actin organization and how actin and its stability affects auxin-transporter endocytosis and recycling, we discuss the current knowledge on regulatory auxin-actin feedback loops. We focus on known effects of auxin and of auxin transport inhibitors on the stability and organization of actin and examine the functionality of auxin and/or auxin transport inhibitor-binding proteins with respect to their suitability to integrate auxin/auxin transport inhibitor action. Finally, we indicate current difficulties in the interpretation of organ, time and concentration-dependent auxin/auxin transport inhibitor treatments and formulate simple future experimental guidelines.
منابع مشابه
The Role of Auxin-Ethylene Crosstalk in Orchestrating Primary Root Elongation in Sugar Beet
It is well-established in Arabidopsis and other species that ethylene inhibits root elongation through the action of auxin. In sugar beet (Beta vulgaris L.) ethylene promotes root elongation in a concentration dependent manner. However, the crosstalk between ethylene and auxin remains unknown during sugar beet seedling development. Our experiments have shown that exogenously applied auxin (indo...
متن کاملInteraction of PLS and PIN and hormonal crosstalk in Arabidopsis root development
Understanding how hormones and genes interact to coordinate plant growth is a major challenge in developmental biology. The activities of auxin, ethylene, and cytokinin depend on cellular context and exhibit either synergistic or antagonistic interactions. Here we use experimentation and network construction to elucidate the role of the interaction of the POLARIS peptide (PLS) and the auxin eff...
متن کاملCellular events of strigolactone signalling and their crosstalk with auxin in roots.
Strigolactones are a new group of plant hormones that suppress shoot branching. In roots, they regulate primary-root growth and lateral-root formation and increase root-hair elongation. Reception of strigolactones occurs via a specific cellular system which includes a D14-like/MAX2-like/SCF complex that, upon perception of strigolactone signalling, leads to certain degradation of receptors and ...
متن کاملHormonal crosstalk for root development: a combined experimental and modeling perspective
Plants are sessile organisms and therefore they must adapt their growth and architecture to a changing environment. Understanding how hormones and genes interact to coordinate plant growth in a changing environment is a major challenge in developmental biology. Although a localized auxin concentration maximum in the root tip is important for root development, auxin concentration cannot change i...
متن کاملHydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis
Hydrogen sulfide (H2S) signaling has been considered a key regulator of plant developmental processes and defenses. In this study, we demonstrate that high levels of H2S inhibit auxin transport and lead to alterations in root system development. H2S inhibits auxin transport by altering the polar subcellular distribution of PIN proteins. The vesicle trafficking and distribution of the PIN protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 66 16 شماره
صفحات -
تاریخ انتشار 2015